Recent developments & future tasks in NNLO top quark theory

Alexander Mitov Theory Division, CERN

Case for NNLO in top-pair production

Main features:

- ✓ Large NLO QCD corrections
- ✓ Total theory uncertainty at (NLO+resummation)~10%
- ✓ Important for Higgs and bSM physics (M. Peskin: "BSM Hides beneath Top")
- ✓ Experimental improvements down to 5% (at LHC)
- ✓ Current LHC data agrees well with SM theory
- ✓ Tevatron data generally agrees too.

The notable exception: Forward-backward asymmetry from Tevatron.

Conclusion: "further scrutiny is needed"

Calculation of the total inclusive x-section tT @ NNLO during the last year

 \rightarrow Published qQ \rightarrow tt +X

Bärnreuther, Czakon, Mitov 12

Published all fermionic reactions (qq,qq',qQ')

Czakon, Mitov `12

Published gq

Czakon, Mitov `12

Published gg

Czakon, Fiedler, Mitov '13

Now the top pair total x-section is known exactly at NNLO in QCD

No approximations of any kind

- First hadron collider calculation at NNLO with more than 2 colored partons.
- First NNLO hadron collider calculation with massive fermions.

2

P. Bärnreuther et al arXiv:1204.5201

NNLO phenomenology at the Tevatron: Czakon, Fiedler, Mitov '13

- √ Independent F/R scales
- ✓ MSTW2008NNLO
- ✓ mt=173.3

Best prediction at NNLO+NNLL

Collider	$\sigma_{\rm tot} \ [{ m pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) $-0.122(1.7%)$
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) $-4.8(2.8%)$
LHC 8 TeV	245.8	+6.2(2.5%) $-8.4(3.4%)$	$+6.2(2.5\%) \\ -6.4(2.6\%)$
LHC 14 TeV	953.6	+22.7(2.4%) $-33.9(3.6%)$	+16.2(1.7%) $-17.8(1.9%)$

Pure NNLO

Collider	$\sigma_{\rm tot} \; [{ m pb}]$	scales [pb]	pdf [pb]
Tevatron	7.009	+0.259(3.7%) -0.374(5.3%)	+0.169(2.4%) -0.121(1.7%)
LHC 7 TeV	167.0	+6.7(4.0%) $-10.7(6.4%)$	+4.6(2.8%) $-4.7(2.8%)$
LHC 8 TeV	239.1	$+9.2(3.9\%) \\ -14.8(6.2\%)$	+6.1(2.5%) $-6.2(2.6%)$
LHC 14 TeV	933.0	+31.8(3.4%) $-51.0(5.5%)$	+16.1(1.7%) -17.6(1.9%)

- ✓ New NNLO gg corrections contribute little, ~ +1.3%, as anticipated.
 P. Bärnreuther et al arXiv:1204.5201
- √ Very week dependence on unknown parameters (sub 1%) A, etc.
- √ ~ 50% scales reduction compared to the NLO+NNLL analysis of

Cacciari, Czakon, Mangano, Mitov, Nason '11

$$6.722^{\,+0.238\,(3.5\%)}_{\,\,-0.410\,(6.1\%)} \,[\text{scales}] \,^{\,\,+0.160\,(2.4\%)}_{\,\,\,-0.115\,(1.7\%)} \,[\text{PDF}]$$

Resumed (approximate NNLO)

Good perturbative convergence:

- √ Independent F/R scales
- ✓ mt=173.3

P. Bärnreuther et al arXiv:1204.5201

- ✓ Good overlap of various orders (LO, NLO, NNLO).
- √ Suggests our (restricted) independent scale variation is good

NNLO phenomenology at the LHC:

Czakon, Fiedler, Mitov '13

- ✓ New NNLO corrections from gg-reaction are large: as large as the ones due to the Coulomb-threshold approximation
- ✓ At most 6% scale +pdf uncertainty
- ✓ Good agreement with LHC measurements

Best prediction at NNLO+NNLL

- ✓ Independent F/R scales
- ✓ MSTW2008NNLO
- ✓ mt=173.3

Czakon, Fiedler, Mitov '13 Czakon, Mangano, Mitov, Rojo '13

✓ We have reached a point of saturation: uncertainties due to

```
✓ scales (i.e. missing yet-higher order corrections) ~ 3%
✓ pdf (at 68%cl) ~ 2-3%
✓ alpha_s (parametric) ~ 1.5%
✓ m_top (parametric) ~ 3%
```

→ All are of similar size!

✓ Soft gluon resummation makes a difference: scale uncertainty 5% → 3%

✓ The total uncertainty tends to decrease when increasing the LHC energy

LHC: general features at NNLO+NNLL

Czakon, Fiedler, Mitov '13 Czakon, Mangano, Mitov, Rojo '13

The actual numbers for LHC 8 TeV

PDF set	$\sigma_{tt} \; (\mathrm{pb})$	$\delta_{ m scale} \; (m pb)$	$\delta_{\mathrm{PDF}} \; \mathrm{(pb)}$	δ_{α_s} (pb)	$\delta_{\mathrm{m_t}} \; \mathrm{(pb)}$	$\delta_{ m tot} \; (m pb)$
ABM11	198.4	+4.8 (+2.4%) -6.2 (-3.1%)	+8.5 (+4.3%) -8.5 (-4.3%)	+0.0 (+0.0%) -0.0 (-0.0%)	+6.1 (+3.1%) -5.9 (-3.0%)	+15.3 (+7.7%) -16.6 (-8.3%)
CT10	245.9	$^{+6.2}_{-8.5}$ (+2.5%) $^{-8.5}$ (-3.5%)	$^{+10.1}_{-8.2}~^{(+4.1\%)}_{(-3.3\%)}$	$^{+4.9}_{-4.9}$ (+2.0%) $^{-4.9}$ (-2.0%)	+7.4 (+3.0%) -7.1 (-2.9%)	+19.6 (+8.0%) -20.4 (-8.3%)
HERA1.5	252.3	$^{+6.5}_{-5.7}$ (+2.6%) $^{-5.7}$ (-2.3%)	+5.3 (+2.1%) -8.6 (-3.4%)	$^{+4.0}_{-4.0}$ (+1.6%) $^{-4.0}$ (-1.6%)	+7.5 (+3.0%) -7.3 (-2.9%)	+16.6 (+6.6%) -17.6 (-7.0%)
MSTW08	245.5	$^{+6.1}_{-8.3}$ (+2.5%) -8.3 (-3.4%)	$^{+6.2}_{-6.2} \stackrel{(+2.5\%)}{(-2.5\%)}$	+3.9 (+1.6%) -3.9 (-1.6%)	+7.3 (+3.0%) -7.1 (-2.9%)	+16.5 (+6.7%) -18.6 (-7.6%)
NNPDF2.3	247.8	$^{+6.2}_{-8.6}$ (+2.5%)	$^{+6.6}_{-6.6}$ (+2.7%)	$^{+3.7}_{-3.7}$ (+1.5%)	+7.5 (+3.0%) -7.2 (-2.9%)	+16.8 (+6.8%) -19.0 (-7.7%)
ATLAS	241.0					± 32.0 (13.3%)
CMS	227.0					$\pm\ 15.0\ (\ 6.6\%)$

Application to PDF's

Czakon, Mangano, Mitov, Rojo '13

How existing pdf sets fare when compared to existing data?

Most conservative theory uncertainty:

Scales
$$+$$
 pdf $+$ as $+$ mtop

Excellent agreement between almost all pdf sets

Application to PDF's

- √ tT offers for the first time a direct NNLO handle to the gluon pdf (at hadron colliders)
 - ✓ implications to many processes at the LHC: Higgs and bSM production at large masses

One can use the 5 available (Tevatron/LHC) data-points to improve gluon pdf

"Old" and "new" gluon pdf at large x:

... and PDF uncertainty due to "old" vs. "new" gluon pdf: Czakon, Mangano, Mitov, Rojo '13

Application to bSM searches: stealthy stop

- √ Scenario: stop → top + missing energy
 - ✓ m_stop small: just above the top mass.
 - √ Stop mass < 225 GeV is allowed by current data</p>
 - ✓ Usual wisdom: the stop signal hides in the top background
- ✓ The idea: use the top x-section to derive a bound on the stop mass. <u>Assumptions</u>:
 - √ Same experimental signature as pure tops
 - √ the measured x-section is a sum of top + stop
 - ✓ Use precise predictions for stop production @ NLO+NLL Krämer, Kulesza, van der Leeuw, Mangano, Padhi, Plehn, Portell `12
 - ✓ Total theory uncertainty: add SM and SUSY ones in quadrature.

Applications to the bSM searches: stealth stop

✓ Predictions

Preliminary

Wonder why limits were not imposed before?

Here is the result with "NLO+shower" accuracy:

Improved NNLO accuracy makes all the difference

Applications to bSM searches: stealth stop

✓ How strong exclusions can be placed? Preliminary

CMS data allows 2 sigma exclusion for

m_stop < 195 GeV

CMS and Atlas combined data (same as SM) allows 2 sigma exclusion for

m_stop < 177 GeV (if combined exp error reduced by ½)

Clearly, theory permits exclusion; looking forward to future data improvements!

Currently refining the analysis (with Czakon, Papucci, Ruderman, Weiler)

Summary and Conclusions

- > Total x-section for tT production now known in full NNLO
- \triangleright Small scale uncertainty (2.2% Tevatron, 3% LHC). Similar to uncertainties from pdf, α_S , M_{top}
- > Important phenomenology
 - Constrain and improve PDF's
 - Searches for new physics
 - > Very high-precision test of SM (given exp is already at 5%!). Good agreement.

Future tasks

- > The idea is to compute fully differential top production, including decays (in NWA), at NNLO
- > This is complicated and will take time (beyond summer 2013)
- \triangleright What can be done by then is to compute $O(\alpha_S^4)$ corrections to A_{FB}

13